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Abstract-The convective stability of a horizontal chemically active liquid layer is studied within which an 
exothermal zero-order reaction takes place in the presence of a number of complicating factors : warming 
of the layer, different thermal conductivities of the boundaries and transverse motion of the reactant. Using 
the Runge-Kutta method, numerical investigation of the linear spectral stability problem of the steady- 
state regimes of heat transfer determined by solving the generalized non-linear problem of thermal explosion 
is carried out. The results obtained demonstrate a substantial influence of the above-listed complicating 
factors on the critical conditions for the thermal explosion and on the limit of the incipience of the reactant 

convective motion. 

1. INTRODUCTION 

GENERALLY, the chemical reaction proceeding in a 

liquid or gas leads to the liberation (absorption) of 
heat and to the formation of a product, the density 
of which differs from that of the reactant. The non- 
uniformities of the density thus produced in the grav- 

ity field may induce convection in a moving reacting 
mixture. The interest in the studies of such situations 
is justifiable from different viewpoints, in particular 
in connection with the elucidation of the effect which 

convective motion exerts on the rate of reaction. In 
those cases when the character of the density non- 
uniformity and the force field are such that a mech- 

anical equilibrium is possible, the problem of the stab- 
ility of the latter suggests itself. The non-uniform com- 
position of the mixture and the reaction-induced 
temperature stratification lead to peculiar convective 
instability with the chemical activity of the medium 
serving both as the main reason for the instability and 
as a strong additional factor. Basically, there may well 
be, and are in the literature, different statements of the 
stability problems in accord with the type of reaction, 
relative role of the thermal effect, conditions on the 
boundaries of the region, etc. A review of some of the 
early relevant works can be found in ref. [I]. 

Pertaining to the kinetics of a chemical process, the 
most simple situation is the problem of the occurrence 
of convection in a horizontal layer of liquid in which 
an exothermal reaction takes place with an appreci- 
able thermal effect. It is then possible to neglect the 
formation of the product and the dependence of heat 
release on concentration (model reaction of zero 
order); in this case the strength of the inner heat 
sources increases exponentially with temperature. At 
constant and identical temperatures of the bound- 
aries, the temperature distribution across the layer is 
maximal in the middle of the layer. The steady-state 

heat conducting regime is characterized by the Frank- 
Kamenetskii dimensionless parameter Fk. Such a 
regime is possible when Fk < Fk,, where Fk,, is a 
certain characteristic value; when Fk > Fk,, the 

steady-state regime is impossible, since thermal 
explosion is initiated. However, even when Fk < Fk,, 

the steady-state regime may be disturbed due to con- 
vective instability. The problem of convective stability 
of such a system and of the influence of developed 

convection on the thermal explosion threshold Fk,, 

was formulated for the first time in the monograph 
by Frank-Kamenetskii [2]. The parameter that deter- 
mines the convective stability is the Rayleigh number 
Ra. Its critical value (in the sense of convection occur- 

rence), Rae, depends on the Frank-Kamenetskii par- 
ameter. The first good estimate of this dependence 
was obtained in the work of Merzhanov and Shtessel 
[3]. The solution of the linear problem of stability was 
made by Jones [4] who numerically calculated the 
function Ra*(Fk) for this case. The critical value of 

Ru* decreases monotonically with the rise of Fk and 
has a final value at the point Fk = FkcR. 

The linear approach allows the determination of the 

limit of convective stability depending on the reaction 
parameters. There naturally arises another question, 
namely about the effect of the originating convection 
on the limit of existence of the steady-state regime. 

The elucidation of this problem requires an essentially 
non-linear approach. It turns out that the increase 
in the intensity of heat removal due to developed 
convection substantially increases the limiting values 
of the Frank-Kamenetskii parameter Fk,,. Of the 
theoretical studies of this kind note should be made 
of numerical calculations by the method of grids in a 
square domain [5], a horizontal circular cylinder [6] 
and in a horizontal layer [7], which made it possible 
to determine the functions Fk,,(Ra). 

The present paper is concerned with a review of 
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NOMENCLATURE 

a integration constant B RToIE 
Bi Biot number, a,d/k (i = 1,2) 0 T-T, 

2 
specific heat at constant pressure 0, equilibrium value of temperature 

layer thickness 0 (It77 maximum value of O,, 

E activation energy 0 amplitude of temperature perturbation 

e unit vector directed vertically upward K thermal conductivity, xp,,c,, 

Fk Frank-Kamenetskii parameter, 1. decrement of perturbations, i, + ii, 

QEd’k, exp (- E/RT,)/KRT; PL,? hydrodynamic levels of the spectrum of 

Y gravity acceleration decrements 

k wave number, j(kf +k:) 1’ kinematic viscosity 

k, pre-exponential factor rn thermal levels of the spectrum of 

P convective contribution to pressure decrements 

Pe Peclet number, uod/x PO mean density 

Pr Prandtl number, v/X z IT,- T, IEIRT; 

QR thermal effect of reaction X thermal diffusivity. 

R universal gas constant 
RU analogue of Rayleigh number, Subscripts 

gaRTid3/Eq * minimum critical values of Rayleigh 
T absolute temperature number and of the corresponding 

To, T, absolute temperatures of layer wave number 

boundaries CR critical values of the Frank-Kamenetskii 

t time parameter 

V velocity of convective motion i boundary of the layer 

vo velocity of transverse motion of reactant n levels of the spectrum of decrements 

W chemical reaction rate + values of the Frank-Kamenetskii 

W amplitude of velocity perturbation parameter up to which the transverse 

x, y, z Cartesian coordinates. temperature gradient retains constant 
sign throughout the layer. 

Greek symbols 
a coefficient of thermal expansion, Superscript 

(- ~PlW,lP” derivative with respect to vertical 

a, heat transfer coefficient on boundaries coordinate. 

the results of linear investigation into the convective 
stability of steady-state regimes of heat transfer in a 
horizontal reacting liquid layer in which an exother- 
ma1 zero-order reaction takes place in the presence of 
various external effects. The influence of the heating 
of the layer from above and below, of different regimes 
of heat removal through the layer boundaries, and of 
transverse homogeneous reactant motion through the 
permeable layer boundaries on the conditions of con- 
vection initiation is considered. 

The solution of the problem regarding the possible 
mechanical equilibrium of a chemically active liquid 
exposed to the influence of the above-listed com- 
plicating factors is reduced to the study of various 
generalizations of the classical problem of thermal 
explosion, the results of which are also presented in 
this paper. 

2. EQUATIONS OF CONVECTION IN 
REACTING MEDIA 

The convective motion of a reacting medium is 
represented by a system of convection equations for 

a chemically inert liquid [8] with additional terms 
characterizing the action of inner thermal and con- 
centrational sources, the specific form of which is 
governed by the reaction kinetics. The case considered 
is an exothermal reaction occurring throughout the 
entire layer corresponding to the zero-order reaction 
model. In this case, the reaction rate does not depend 
on the reactant concentration, and increases expo- 
nentially with temperature according to the Arrhenius 
law, W = k,exp (-E/RT). Such a model can be 
applied to fast reactions with great release of heat 
when thermal processes develop against the back- 
ground of virtually invariable concentration of a reac- 
tant. 

The system of dimensionless equations of free ther- 
mal convection in an incompressible medium with 
zero-order reaction in the Boussinesq approximation 
[8] has the form 

?V 1 
Z + E(vV)v = -Vp+Av+RaOe 

I 

Pr :qy + vV0 = A0 + Fk exp 0 
1+80 
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divv = 0. (1) 

The quantities d, d2/v, x/d, RT$E and povX/d2 

were selected as the units for measuring the distance, 

velocity, temperature and pressure. Besides the par- 
ameters Ra and Fk mentioned above, equations (1) 
involve the Prandtl number, Pr = v/x, and the small 
dimensionless parameter b = RTo/E. 

The inner heat generation in the layer and the 
removal of the heat through the boundaries results in 

non-uniform heating of the reacting liquid and in the 
incipience of convection. However, there are special 
conditions in a horizontal layer under which steady- 

state heat transfer is possible in it ; then the convective 
motion is absent and all the variables are independent 
of time. It can be shown [S] that in this case the 

temperature gradient must be vertical. As regards the 
velocity of the medium, it is either equal to zero (mech- 
anical equilibrium), or there is homogeneous trans- 

verse constant-velocity motion in the layer due to 
vertical injection of liquid through one permeable 
boundary of the layer and suction through the other. 
It follows from equations (1) that in the first case the 
temperature distribution in the layer is governed by 
the well known equation of Frank-Kamenetskii [2] 

@i+Fkexp 
0 

i&=” 
(2) 

and in the second case by its correlation 

a’;,-PeOb+Fkexp---- = @O 0. 
1 +BO, 

(3) 

The dimensionless Peclet number, Pe = u,d/x, char- 
acterizes the intensity of the transverse motion of the 
reactant. 

The solution of equations (2) and (3) subject to the 
corresponding boundary conditions that ensure the 
verticality of the temperature gradient makes it poss- 
ible to find steady-state temperature profiles and the 
areas of the parameter values in which they exist. 

In order to elucidate the problem of convective 
stability of these steady-state heat transfer regimes, 
small unsteady-state perturbations, periodic in the 
plane (x, y), will be considered according to the linear 
theory of stability : 

uz = u’(z)exp[-It+@,x+k,y)] 

0 = O(z)exp[-lt+i(k,x+k,y)] (4) 

where 1 = i,+L., is the complex decrement of per- 
turbations ; k, and k, are the wave numbers ; the stab- 
ility limit is determined by the condition 1, = 0 ; the 
quantity ii characterizes the frequency of fluctuations. 
After the substitution of equation (4) into system (I), 
and linearization and elimination of the pressure, a 
system of ordinary differential equations is obtained 
for the amplitudes of normal disturbances w and f3 : 

-I(w”-k’w)+ ;(w”‘-k2w’) 

= (w’” -2k2w”-+k“w)-Rak’O 

-lPr8+PeO’+wOb = (@‘-k2@ 

+FkeexpPoi(l +Po>l (5) 

(1+Boo)2 

In the present work, the convective stability of a 
reacting liquid is investigated for the following ver- 

sions of the problem statement that differ in boundary 
conditions and in the effect of complicating factors : 

(1) The layer is bounded by solid, impermeable 
infinitely heat-conducting planes having the same tem- 

perature. 
(2) Solid impermeable boundaries of the layer are 

maintained at different temperatures ; the cases of 
heating from below and from above are considered. 

(3) The boundaries of the layer have an arbitrary 

thermal conductivity. 
(4) In the layer with the isothermal boundaries, a 

uniform transverse pumping of the reactant is made 

at a constant speed. 

It is necessary to formulate the corresponding 
boundary conditions for the amplitudes of dis- 

turbances. In all cases the velocity of convective 
motion v on the boundaries of the layer disappears, 
and the general conditions are 

w(o)=o,w’(o)=o,w(1)+o,W’(l)=o. 

(6) 

Two types of boundary conditions are considered for 
temperature disturbances. In the case of infinitely con- 
ducting boundaries (versions 1, 2 and 4) the tem- 

perature disturbances on them disappear : 

O(0) = 0,0(l) = 0. (7) 

Heat removal through the boundaries of arbitrary 
thermal conductivity (version 3) is represented by the 
conditions 

0’(O) = Bi, O(O),@(l) = -Bi20(l) (8) 

where the dimensionless Biot number Bi, = cc,d/x 

characterizes heat transfer at the boundaries. 
The solution of this boundary-value problem allows 

the determination of the critical values of the par- 
ameters and forms of disturbances at which the con- 
vective instability of the stationary heat transfer orig- 
inates and develops in the layer. 

3. STEADY-STATE HEAT TRANSFER REGIMES 

As mentioned earlier, steady-state heat transfer in 
a horizontal layer of a reacting liquid is possible when 
the temperature depends only on the vertical coor- 
dinate, and the distributions On(z) are the solutions of 
equation (2) or (3) with the corresponding boundary 
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conditions. For the versions of the problem con- 
sidered these conditions have the form : 

(I) for the layer with boundaries of identical tem- 
perature (versions 1 and 4) : 

O”(0) = O,@,(I) = 0; (9) 

(2) for the layer with boundaries of different tem- 
peratures (version 2) two cases are investigated : 

(a) heating from below O,(O) = 0, O,(l) = -r 

and 

(b) heating from above O,(O) = --z, O,(l) = 0 

(10) 

where z = ITo- T, ]E/RTi is the dimensionless 
difference of the temperatures of the boundaries ; 

(3) for the layer with the final thermal conductivity 
of the boundaries (version 3) : 

o;,(o) = Bi, O,(O), @o(l) = -Bi* O,(l). (11) 

First, the base problem will be considered in which 
the reactant is at rest under steady-state heat transfer 
conditions, and the boundaries of the layer have ident- 

ical temperatures (version I). In this case, the boun- 
dary-value problem (2), (9) is reduced to the classical 
problem of thermal explosion. 

It is known [2,4] that this boundary-value problem 
has solutions in a certain range of the values of the 

Frank-Kamenetskii parameter, 0 < Fk < FkcR. For 
a plane layer at a = 0, the parameter FkcK = 3.514 

increases little with increasing /I [4], which does not 
exceed 0.1 for actual processes. A detailed analysis of 
the effect of p on the thermal explosion threshold is 

contained in ref. [9] ; the most precise calculation of 
the value of Fk,, was made in ref. [lo]. When 
Fk < Fk,,, the problem has two solutions, low-tem- 
perature and high-temperature solutions, with the lat- 
ter always being unstable with respect to plane-par- 

allel temperature perturbations. An example of the 
resulting equilibrium distributions O,,(Z) being sym- 
metric about the middle of the layer where there is a 

(a) lb) 

0 2 -4 6 8 

Fk 

I 
l( 
> 
I 

FIG. 2. The maximum temperature a,,,,, as a function of 
Fk. (I) For boundaries with identical temperatures. (2) For 
boundaries of different temperatures at T = 2.5. (3) For 
boundaries of finite thermal conductivity at Bi, = I and 
Bi? = x. (4) For the layer with transverse pumping of the 
reactant at Pe = 4. Solid lines are constructed at p = 0; 

dashed lines at /I = 0.1. 

maximum value 0, is given in Fig. l(a) as a dashed 
line. The corresponding function O,,,(Fk) is depicted 
as curve 1 in Fig. 2. 

Now, the influence of the complicating factors on 
the form of the stationary solutions and the thermal 

expansion threshold will be considered. 
The effect of the transverse temperature gradient*on 

the conditions for the occurrence of thermal explosion 

was first analysed in ref. [I I]. The cooling of one of 
the layer walls (it is natural here to take the initial 
temperature reading from the hot wall, T,) leads to 
an increase in heat removal from the reaction zone 
and, consequently, to the rise of the thermal explosion 
threshold. As a result of the analytical solution of 
equation (2) for the threshold values of Fk, the fol- 

lowing relation was obtained in ref. [ 1 l] : 

(cl 

;;yqJp-Jj~~ 
-2 

-1 0 0 0.2 0.4 0 0.05 0.10 

FIG. I. Stationary distributions of temperature O,(z) at fi = 0. (a) In the layer heated from below at z = 2.5 
and different values of F/C (solid lines) and at T = 0, Fk = 3 (dashed line). (b) In the layer with boundaries 
of different thermal conductivities at Bi = 1 for three versions of the ratios of the thermal conductivities 
of the boundaries at (1) Fk = 0.5 ; (2) Fk = 0.125 ; (3) Fk = 1.25. (c) In the layer with transverse motion 

of a reactant at different values of Pe. 
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Fk = i (arcosh J(a exp Z) + arcosh Jo) *. (12) 

At a fixed value of 7, the critical condition for the 
thermal explosion Fk,, is governed by the maximum 
of the right-hand side of equation (12) as a function 
of the integration constant a. 

The numerical solution of the boundary-value 
problem (2), (10) by the Runge-Kutta technique 
made in ref. [12] shows, according to equation (12), 
that the transverse gradient drastically increases the 
explosion threshold. This dependence is shown in Fig. 

3 and, naturally, is common for boundary conditions 
(lOa) and (10~). When z # 0 and Fk < FkcR, the 
problem has two solutions (just as in the case of iso- 

thermal boundaries (r = 0), the upper of which is 
unstable with respect to temperature disturbances. 
The dependence of the maximum temperature 0, on 

the Frank-Kamenetskii parameter for a fixed value of 
z is presented in Fig. 2 (curve 2). At values of Fk 

smaller than a certain value of Fk, (Fk, < Fk,,), 

the temperature of the hot wall is maximal for the 
lower equilibrium regime in the layer; when 

Fk, < Fk < Fk,, the maximum temperature is dis- 
placed into the layer resulting in a substantial change 
in liquid density stratification. The value of Fk, is 
determined from the condition of the derivative 

dO,/dz being equal to zero on the hot boundary. The 
corresponding function Fk, (z) is shown in Fig. 3. 

Figure l(a) depicts the low-temperature equi- 
librium distributions O,(z) for the layer heated from 
below at constant differences of temperatures of the 

24 - 

I I I I I 
0 3 e 9 12 

Pe 

FIG. 3. The functions FkCR(~) and I++(r) for the heated 
layer and Fk,,(Pe) for the layer with transverse motion of 

a reactant at p = 0. 

boundaries and different values of Fk. Similar tem- 
perature profiles for heating from above are obtained 
by means of replacement of z by 1 -z. 

Strictly speaking, the assumption about the con- 
stant temperature at the interface between the heat 
generating substance and the walls of the layer (infi- 
nite thermal conductivity of the boundaries) is not 
realizable for liquid reactants, the heat capacity of 
which is often comparable with that of solid bodies. 

The boundary-value problem (2), (11) corresponds to 
the condition of heat transfer of genera1 type. Accord- 
ing to ref. [I 31, the qualitative picture of the solution- 
the existence of two equilibrium regimes and their 
stability at the subexplosive values of the parameter 
Fk-is similar to that already described. The form of 

the low-temperature equilibrium distributions Go(z) 
is displayed in Fig. l(c) for three most interesting 

specific cases : 

(1) Both boundaries have the same thermal con- 

ductivity, i.e. Bi, = Bi2 = Bi. 
(2) One of the boundaries (for example, the lower) 

is thermally insulated, the other has an arbitrary ther- 
mal conductivity: Bi, = 0, BiZ = Bi. 

(3) One of the boundaries (the upper) has an infi- 

nite thermal conductivity, while the thermal con- 
ductivity of the other is arbitrary : Bi, = Bi, Bi? = co. 

An example of the function O,,(Fk) for the latter 
case is given in Fig. 2 (curve 3). 

The equilibrium heat and mass transfer regimes 

in such a system exist at values of Fk smaller than 
Fk,,(Bi,.,), some values of which are presented in 
Table 1 according to the data of ref. [13]. The inter- 

change of the upper and lower boundaries certainly 
does not influence the values of Fk,-R(Bi). 

The steady-state heat transfer in the case of uniform 

transverse motion of the reactant (the boundary-value 
problem (3) (9)) depends greatly on the intensity of 
this motion. According to ref. [14], at Pe # 0, just as 
in the aforementioned versions of the problem of the 

reacting liquid’s mechanical equilibrium, two heat- 
conducting regimes are possible in the layer for 
Fk < Fk,,, and of these only the low-temperature 

regime is stable. As the intensity of injection increases, 
the symmetry of the stationary temperature profiles is 
violated, and the zone of greatest heating displaces to 
the boundary z = 1 (see Fig. l(c)). Figure 2 (curve 4) 

shows the functions O,,(Fk) at a fixed value of Pe 

and two values of 8. It is seen that the value of/Y should 
be taken into account only for the high-temperature 
(unstable) regime. 

The dependence of the critical value of the Frank- 

Kamenetskii parameter on Peclet number is given in 
Fig. 3. It follows from the plot that the injection 
substantially increases the thermal explosion thres- 
hold. The function FkcR(Pe) at Pe < 4 and /l= 0 can 
be approximated accurate to 3% by the polynomial 

Fk,, = 3.514+0.0485Pe2+0.0015Pe4. 

For large values of Pe, the function Fk,,(Pe) is linear. 
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Table I. Dependence of the critical value of the Frank-Kamenetskii parameter F/C,, on Bi 
for three versions of the thermal conductivity ratios of boundaries 

Bi, = Bi, = Bi Bi, = 0, Bi, = Bi Bi, = Bi. BiZ = ?J 

Bi Fkm Fkm Fk,., 

0 0.00000 0.00000 0.8785 
0.05 0.03648 0.01810 0.9144 
0.10 0.07237 0.03559 0.9496 
0.20 0.1424 0.06890 1.018 
0.50 0.3390 0.1567 1.208 
I 0.6269 0.2707 1.479 
2 1.083 0.4209 1.888 
5 1.889 0.6194 2.513 
IO 2.478 0.7290 2.931 
z 3.514 0.8785 3.514 

The given function F/C,,(&) is also preserved in 
the case of the reversal of injection (Pe < 0). Here, 
the temperature profiles are obtained by the replace- 
ment of z by 1-z. However, the distributions of the 

reactant density are very different in these cases. 
In connection with the analysis of the mechanisms 

underlying the effect on the explosion threshold, men- 
tion should be made of ref. [ 151, in which the problem 
of thermal explosion was investigated for the general 
case when a reactant was injected into a layer having 
boundaries of different temperatures, with the injec- 
tion being made alternatively on both (cooler and 

hotter) sides of the layer. 

values of the parameters Fk and fl for a low-tem- 
perature equilibrium solution stable in a motionless 
reactant. The calculated data are generalized in the 
form of the dependence of the minimum critical Ray- 

leigh number Ra. on the Frank-Kamenetskii par- 
ameter (hereafter this relationship will often be 
referred to for comparison). 

It is shown in ref. [4] that at small values of Fk the 
parameter p has virtually no influence on the limit of 
convective stability and at Fk z Fk,, even the value 
[j = 0.1 increases this limit by no more than 5-7%. In 
the majority of further calculations this allows an 
assumption that /3 = 0 [2]. 

The analysis of the existence of steady-state heat 
transfer in the layer of a reacting liquid and the deter- 
mination of the critical conditions for thermal 
explosion show that the presence of the complicated 
factors does not lead to qualitative changes in the 
solution of the problem. However, these factors 
strongly influence the region of existence of steady- 

state regimes (in other words, the thermal explosion 
threshold) and the form of the corresponding tem- 
perature distributions that determine the liquid den- 
sity stratification in the layer and thus the conditions 
for the incipience of free convection. 

The assertion about the monotonous character of 
critical disturbances [4] is not obvious and requires 

analysis. In general, the decrements of normal dis- 
turbances, which are the eigenvalues of problem (5)) 
(7), are complex, and the limit of stability is deter- 
mined by the condition i., = 0 ; the values 1, > 0 cor- 
respond to stable conditions, i, < 0 to unstable con- 
ditions. At Ra = 0 and Fk = 0, equation (5) becomes 
independent, and the boundary-value problem 
becomes a self-conjugated one signifying the mon- 
otonous character of disturbances. Generally, one 
fails to prove the monotonicity of disturbances. 

4. CONVECTIVE STABILITY OF STEADY- 

STATE HEAT TRANSFER REGIMES 

4.1. A layer with isothermal boundaries 

The boundary-value stability problem formulated 

for an incompressible fluid in which a homogeneous 
exothermal zero-order reaction takes place is the most 
general one. In cases when mechanical equilibrium of 
fluid is possible (i.e. at Pe = 0), the system of equa- 
tions (5) is simplified. Its solution was obtained [4] 
for boundary conditions (6). (7) that correspond to 
solid. ideally heat-conducting walls of the layer with 
identical temperatures. It was assumed for the solu- 
tion that the disturbances leading to the violation of 
equilibrium and to the development of convection 
were monotonous and that the limit of stability was 
determined by the condition i = 0. As a result, a set 
of neutral curves /&z(k) were constructed at different 

In order to find the eigenvalues at Ru # 0 and 
Fk = 0, the Runge-Kutta method was used [ 161 with 
automatic selection of the integration step depending 
on the accuracy required [ 171. The equations of the 
boundary-value problem were presented as a system 
of 12 ordinary differential first-order equations for 

the real and imaginary parts of the amplitudes of 
disturbances, and three linearly independent solutions 
satisfying the boundary conditions at the initial point 
of integration ,I = 0 were constructed numerically. 
The requirement for the existence of the non-trivial 
solution to the problem that would satisfy the con- 
ditions at the end of the integration interval z = I 
makes it possible to obtain the characteristic relation 
which determines the eigenvalues of the problem. 

The behaviour of disturbances at different Rayleigh 
numbers is characterized by the spectrum of dis- 
turbance decrements L(Ra). Figure 4 presents the real 
parts of the lower levels of the spectrum of decrements 
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Rax 10’ 

FIG. 4. Monotonous (solid lines) and vibrational (dashed 
lines) branches of the spectrum of the real parts of dec- 

rements at Fk = 2.8, k = 3, Pr = 1 and /I = 0. 

of the thermal (v,) and hydrodynamic (p,,) per- 
turbations of the low-temperature equilibrium solu- 

tion at fixed values of Fk, k and /?, and at Pr = 1 
(reacting gases) as functions of the Rayleigh number. 
It follows from the plot that within the range of Ra 

variation of the Ra values there are two levels of the 
spectrum that lead to monotonous instability. The 
critical value of the most interesting first level of insta- 
bility coincides with that obtained in ref. [4]. The 
spectrum of the decrements shows that in the system 
investigated vibrational regimes are possible with 
li # 0 (dashed curves in Fig. 4) which, however, do 

not lead to instability. The spectra for Fk, k and Pr 

have similar forms. The eigenvalues of the problem 
are very sensitive to changes in the Prandtl number, 
whereas the critical values of Ra of monotonous insta- 
bility do not depend on Pr. 

The calculations show that though oscillating dis- 
turbances are possible in the system, vibrational insta- 
bility is absent in the region of parameters studied [ 161 
(the value of the Prandtl number varied from 1 to 20, 
the Frank-Kamenetskii parameter from 1 to 3.51 and 
the wave number from 1 to 4), and it is monotonous 

disturbances that lead to the crisis of equilibrium. This 
result confirms the basic assumption made in ref. [4]. 

The analysis of the spectrum of decrements for the 
high-temperature equilibrium solution, which is 
unstable with respect to thermal disturbances, shows 
that the allowance for hydrodynamic disturbances 

does not lead to stabilization, and this regime remains 
unstable at all Rayleigh numbers. 

The solution of the full non-linear convection equa- 
tions was obtained in ref. [7] with allowance for the 

results of linear investigation of stability for the state- 
ment of the problem under consideration. Figure 5 
shows the chart of the regimes on the plane (Fk, Ra). 

In region 1 the reacting liquid is in mechanical equi- 
librium corresponding to the low-temperature regime. 
In region 2, convective motion is developing. The 
boundary between regions 1 and 2 practically 
coincides with that determined by linear theory. In 

Fk 

FIG. 5. The chart of the regimes on the plane (Fk, Ra) for 
Pr = 1, k = 3.5 and B = 0. 

region 3, a thermal explosion takes place. Of interest 
is the fact that the convective motion, which creates 
an additional transverse heat transfer, considerably 

shifts the thermal explosion threshold to the side of 
the higher values of the Frank-Kamenetskii par- 
ameter (the boundary between regions 2 and 3). 

4.2. The layer with the transverse temperature gradient 
Now, the problem will be considered dealing with 

the convective stability of the reactant equilibrium in 
the layer whose boundaries have different tem- 

peratures (boundary-value problem (5)-(7), equi- 
librium problem (2), (10)). 

When z = 0, the wall temperatures of the layer are 
the same, and the problem of stability is reduced to 
that considered in Section 4.1. In the other limiting 
case when Fk = 0 (z # 0), the internal heat generation 

is absent and equations (5) with boundary conditions 
(6), (7) describe the well known Rayleigh problem [8]. 

The solution of this boundary-value problem in its 
complete formulation was made in ref. [12] with the 
help of the above-described numerical procedure. Just 
as in the two limiting situations, 7 = 0, Fk # 0 and 

z # 0, Fk = 0, the monotonous disturbances with 
li = 0 turn out to be responsible for the lower level of 

instability, i.e. the neutral disturbances are determined 
by the condition 1 = 0. The results of the numerical 
solution are reported below. First, consider the ver- 
sion when the lower boundary of the layer is heated, 
and the equilibrium temperature distributions are 
described by boundary-value problem (2), ( 1 Oa) 

The boundary of the convective stability &z(k) is 

presented in Fig. 6 for a fixed difference of tem- 

peratures and different values of the Frank-Kamenet- 
skii parameter (the regions of instability are located 
above the curves). The curve Fk = 0 is the solution of 
the Rayleigh problem. As already noted, the aug- 
mentation of the exothermal chemical reaction (the 
increase in Fk) leads to a noticeable change in liquid 
density stratification. Thus, when Fk > Fk,, the rise 
of the values of the Frank-Kamenetskii parameter is 
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FIG. 6. The neutral curves k(k) at /3 = 2.5 and different 
values of Fk for the low-temperature (solid lines) and high- 

temperature (dashed lines) stationary solutions. 

accompanied by a decrease in the thickness of the 
region with the potentially unstable distribution of 
the density in the upper portion of the layer. As the 

power of internal heat generation increases, the con- 
vective stability of the system is lowered; at 
Fk = Fk,,, the value of Ru* E min Ra(k) is finite. 
When Fk < Fk,, the transverse temperature gradient 

is directed downward across the entire layer, whereas 
the liquid density stratification differs weakly from 
the Rayleigh stratification. This explains the slight 
decrease in stability observed at the initial stage of the 
rise in the value of Fk. When Fk < Fk, the wave 
numbers k, that correspond to Ra* and determine 
the dimensions of the critical convective cells are also 

close to the value k % 3.1 which is characteristic of 
the Rayleigh problem. As Fk increases in the region 
with Fk > Fk,, the contribution of the internal heat 
generation into the system instability becomes sub- 
stantial and leads to a sharp decrease in the value of 

Rae. 
The behaviour of k, in this region of variation of 

Fk is of interest. For values of Fk close to Fk,,(z), the 
length of the waves of critical disturbances increases 
sharply (correspondingly, the values of k, decrease). 

This result seems to be associated with the specific 
nature of heat generation in reacting systems. Due to 
the non-linear dependence of the chemical reaction 
rate on the temperature, the problem of stability of the 
steady-state heat-conducting regimes in a quiescent 
liquid occurs. The stability of solutions at Rn = 0 (in 
this case the motion equation in system (5) has a 
trivial solution) was investigated in ref. [14], where it 
was shown that the most dangerous disturbances were 
those with k = 0. This distinction of the plane-parallel 
disturbances in reacting systems also influences the 
picture of stability in the general case when Ru # 0. 

The dashed lines in Fig. 6 represent the neutral 
curves relating to the high-temperature equilibrium 
regime. In this case the distributions O,,(z) are similar 
to those shown in Fig. I(a) for Fk,,. Here, to the 
stable state of the liquid there correspond regions 

under the Ra(k) curves. Just as in the previous state- 
ment of the problem [4, 161, the neutral curves become 
greatly distorted in transition to the high-temperature 
equilibrium solution, and in the zone of long-wave 

disturbances there appears a section of absolute con- 
vective instability (ensuing at Ra = 0), naturally due 
to the action of the mechanism of thermal instability 

in a quiescent liquid. With a decrease in Fk, which is 

accompanied by the rise of a,,,,, in this regime, the 

region of absolute instability expands. 
The results of investigations can be conveniently 

presented as the dependence of the minimum critical 
Rayleigh number Rue on the parameters of the prob- 
lem. The function Ra* (Fk) for various values of 7 is 

given in Fig. 7. In the absence of heating (5 = 0), the 
density inhomogeneities disappear in the layer with a 
decrease in Fk, and the values of Ra* tend to infinity. 
As already noted, at z # 0 and Fk = 0, the boundary- 
value problem is reduced to the Rayleigh problem, 
the main features of which are also preserved at small 
values of the Frank-Kamenetskii parameter. The 
increase in internal heat generation leads to a decrease 
in stability, but the values of Rue (Fk) arc finite at all 

values of 7. All the curves Ru*(Fk) have end points. 
due to the fact that in the case of Fk > Fk,, the 
equilibrium regimes are absent and the problem ol 
their stability does not occur. 

Now, the problem will be elucidated regarding the 
possibility for the setting-up of convection when the 
layer is heated from above. With this variant of the 
boundary conditions the equilibrium distributions of 
temperature are found from the boundary-value prob- 

‘.I I I 
0 0 12 18 240 

Fk 

FIG. 7. The minimum critical value of the Rayleigh number 
Ru. as a function of Fk for different values of 5 with heating 
of the layer from below (solid lines) and from above (dashed 

lines). 
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lem (2), (10~). If there is no internal heat generation 
in the layer (Fk = 0), the transverse temperature 
gradient directed upward produces a stable strati- 

fication of density, and convective motion of the reac- 
tant is impossible. The stabilizing effect of the trans- 
verse temperature gradient is also preserved in the 
presence of the exothermal chemical process up to 
Fk = Fk,. When Fk > Fk,, the maximum tem- 

perature is shifted toward the inside of the layer and 
a narrow region of the reactant with potentially 
unstable density distribution develops near the upper 
boundary. In contrast to the previous case, for the 
boundary conditions considered, two mechanisms of 

liquid stratification compensate one another. 
In Fig. 7 the functions Ra*(Fk) are presented for 

two values of z. Just as in the case of heating from 
below, at Fk = Fk,, these relations have end points. 
As Fk decreases, the values of Ra, increases rapidly, 
and the functions Ra* (Fk) approach the asymptotes 
shown in Fig. 7 by vertical dashed lines. The location 

of the asymptotes is dictated by the values of Fk, (z) 

found from the solution of the equilibrium problem ; 
when Fk < Fk, , the equilibrium state of the reactant 
is absolutely stable. 

The results presented in Fig. 7 show that while the 
transverse temperature gradient greatly expands the 
region of existence of equilibrium regimes of heat 

transfer. it considerably decreases (with heating from 
below) and increases (with heating from above) their 
convective stability as compared with the case of z = 0 
[4], also depicted in Fig. 7. 

4.3. A layer with boundaries of arbitrary thermal 

conductivit_v 

Now, the effect of the finite thermal conductivity of 
the boundaries of a horizontal reactant layer on the 
convective stability will be considered on the example 
of the same three particular cases of the relation- 
ship between the thermal conductivities of the upper 
and lower surfaces, which were discussed above in 
connection with the problem of thermal explosion 
(2), (11). As Bi varies from 0 to co, in the first case 
(Bi, = Bi, = Bi) Fk,, varies within the range from 
0 to 3.514, in the second case (Bi, = 0, Biz = Bi) 

from 0 to 0.8785, and in the third case (Bi, = Bi, 

Bi2 = co) from 0.8785 to 3.514. The third case at 
Bi = 0 coincides with the second case at Bi = co, and 
at Bi = co the third and the first cases are equivalent. 

The numerical solution of the boundary-value 
problem (5), (6), (8) determines the limits of con- 
vective stability of such steady-state regimes of heat 
transfer (it is understood here that Pe = 0). For the 

low-temperature steady-state regime, which is stable 
in a quiescent medium, Fig. 8 presents a family of 
relationships between the minimal critical values of 
the Rayleigh number Ra* and the Frank-Kamenetskii 
parameter, which corresponds to the three considered 
versions of the relationships between Bi, and Bi, and 
to different values of the Biot number Bi. At 
Fk = Fk,, all the curves Ra*(Fk) have final points 

0 1 2 3 4 

Fk 

FIG. 8. The minimum critical value of the Rayleigh number 
Ra. as a function of Fk at different values of Bi for three 

versions of thermal conductivity ratios. 

due to the absence of equilibrium heat transfer regimes 
for Fk > Fk,,(Bi). The region of convective insta- 
bility of the system is located above the curves 

Ra* (Fk). 
The decrease in the values of the parameter Fk 

corresponds to weaker internal heat generation which 
is responsible for reactant density stratification. This 

leads to a sharp increase in the convective stability of 
the reactant, and when Fk --* 0 (absence of reaction), 
Ra* -+ CD. For the relationship between the thermal 
conductivities of boundaries 1.3 at Bi = m, the prob- 

lem is reduced to the well known investigation with 
perfectly conducting boundaries, and here the results 
of calculation coincide with those obtained in ref. [4]. 

The behaviour of the critical wave number k, (cor- 
responding to Ra,) with increasing Fk is typical for 
such problems. At any values of Bi in all of the con- 
sidered versions of heat conducting properties of the 
boundaries the length of the waves of critical dis- 

turbances increases for values of Fk close to Fk,,(Bi), 

i.e. k* decreases from the characteristic values 

k, - 3Stok*- 1. 

Note that in contrast to the problem of thermal 
explosion, the reversal of the boundaries in the study 
of convective stability is reduced to the equivalent 
statement only for the first particular case of the 
relationship between Bi, and Bi, ; for the second case 

this reversal leads to a stably stratified state of the 
reactant in which the convection does not originate ; 
for the third case it leads to a separate problem of 
stability. 

Allowance for the finite conductivity of the layer 
boundaries alters very significantly both the explosion 
threshold and the convective stability of the reactant. 
The determination of the conditions for the orig- 
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ination of convection in the general case of the arbi- 
trary values of Bi, and Biz does not lead to additional 
computational difficulties ; the complexity here con- 
sists of the representation of the results for such a 
multi-parametric problem. 

4.4. A layer with transverse pumping of a reactant 
NOW, the effect of the transverse motion of the 

reactant on the convective stability of the system will 
be considered. It is assumed that the layer boundaries 
are maintained at a constant temperature T,). The 

reactant is uniformly injected at a velocity 1;” through 
the lower boundary and is sucked at the same velocity 
through the upper boundary. This leads to the exis- 
tence of a non-disturbed cross-section in the layer with 

a uniform vertical velocity v,,. The infinite steady- 
state heat transfer in such a system was considered in 
Section 3. 

t 
9 
x 

B 

In a moving reacting medium, the stability of the 
low-temperature steady-state regime of convection 
may be violated due to the setting-in of convection. 

4 

Fk 

The behaviour of disturbances in such a medium is 
described by boundary-value problem (5).-(7). The 

equilibrium temperature distributions OO(Pe, Fk. Z) 

are the solutions of equilibrium problem (3), (9), and 
they exist in the region Fk < Fk,,(Pe). 

FIG. 9. The minimum critical Rayleigh number Ru. as a 
function of F/C at different values of Pr for Pr = I (solid 

lines) and Pr = 20 (dashed line). 

At Ra = 0 (no buoyancy force), boundary-value 
problem (5))(7) is reduced to the problem of the stab- 
ility of non-convective heat transfer processes against 

temperature disturbances in the reactant in uniform 
lateral motion. When Pe = 0, the problem coincides 
with that considered in ref. [4]. 

The calculations carried out in ref. [18] show that 
the spectra of the decrements &(Ra) have a very com- 

plex structure, resembling that depicted in Fig. 4 for 
the case PC = 0. However, just as in the cases already 
considered, the responsibility for convective insta- 

bility rests with monotonous disturbances. The pres- 
ence of blowing leads to the appearance of the depen- 
dence of the monotonous instability limit (E. = 0) on 
Prandtl number. Note that, in contrast to the cor- 

responding problem of thermal explosion 1141, the 
picture of convective instability in the presence of 
blowing is not invariant with respect to the reversal 

of the transverse motion of the reactant. 

Figure 9 presents the function Ra*(Fk) at a fixed 

value of Pr and different values of Pe. At Fk = FkCR 

the curves Ra* (Fk) have end points, the locations of 
which are determined by the Peclet number. The 
enhancement of blowing exerts a stabilizing effect. 
With an increase in the Frank-Kamenetskii 
parameter, the power of chemical internal heat 
sources increases as well as the warming of the reac- 
tant, and this leads to a decrease in convective 
stability. The increase in the values of the Prandtl 
number for liquid reactants (for liquid explosives 
Pr - 20) is accompanied by a weak increase in the 
threshold of the setting-up of convection. The func- 

tion Ra*(Fk) for Pr = 20 is represented by a dashed 
line. 

The increase in the intensity of blowing at a fixed 

value of the Frank-Kamenetskii parameter for the 

lower regime decreases the heating of the liquid due 
to internal heat generation and narrows the region 
of unstable stratification of density near the upper 
boundary of the layer (Fig. 1 (c)). These circumstances 
lead to a considerable increase in the convective stab- 
ility of the medium with an increasing parameter Pe 

and to the displacement of the critical wave numbers 
to the side of short-wave disturbances. 

The critical values of the Rayleigh number Ra* rise 
monotonically with the reactant rate; at all values 
of the Frank-Kamenetskii parameter the increase in 
convective stability turns out to be very notable. Thus. 

in a 1 cm thick layer of reactant with properties close 
to those of water, the transverse motion at a velocity 
of 0.005 cm SC’ increases the stability four times. 

The results of the solution of the stability problem 
are presented in Fig. 9, representing the dependence 
of the minimum critical Rayleigh number Ra* of the 

The dependence of the convective stability bound- 
ary on the Prandtl number has a rather complex form 
and was analysed in detail earlier [18]. According to 
the results obtained, as Pr increases, the stability of 
the system rises slightly in the region Pr > I. and the 
curves Ra*(Pr) approach the asymptotes corres- 
ponding to Pr = co. At Pr = co, the values of Ra* 

exceed Ra* at Pr = 1 by only 45%. For the 

basic instability level on the remaining parameters. majority of chemically active liquids high values of Pr 
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are typical, and therefore in the solution of boundary- Thus, three effective mechanisms for the control of 

value problem (5)-(7) in the equation of motion, the the threshold phenomena of thermal explosion and 

terms that describe the pumping of the reactant can ’ of convective instability in reactive media have been 

be neglected. In this asymptotic case the dependence analysed. The aforegoing investigation of the stability 

of Rae on Pr disappears. is limited by the possibilities of the linear theory 

At Pr - 1, the functions Ra* (Pr) have minima. which, in particular, does not allow one to describe 

When Pr < 1 (reacting gases), a sharp increase in the the effect of developed convection on the critical con- 

stability threshold is observed with decreasing Pr, and ditions of thermal explosion. 

as Pr + 0, at all the values of the parameters, Ra* -+ 

00 [18]. 
The aforegoing results indicate that transverse I 

blowing of the reactant, at the temperature of the 
layer boundaries, makes it possible to substantially 
increase the convective stability of the system. 2 

3 

5. CONCLUSIONS 

The following basic results were obtained in the 4 
study of free convection in an infinite horizontal layer 
of a moving incompressible reactant in the presence 5 

of a homogeneous exothermal zero-order reactio 

(1) The complicating factors, such as heating o ‘OS5 
layer from below or from above, different therm21 6 

conductivities of the layer boundaries and unif 
transverse motion of the reactant, substant 1085 

change heat removal from the reaction zone and the 
density stratification of the chemically active liquid. 

(2) The study of the specific features of heat trans- 

fer in such a system is reduced to the generalization 

8 

of the classical problem of thermal explosion. The 
factors listed above do not vary the well known quali- 9 
tative picture of the solution : when Fk < Fk,,, two 
steady-state heat transfer regimes are possible in the 
layer : the low- and high-temperature regimes ; when lo 

Fk > Fk,,, thermal explosion takes place. The high- 
temperature regime always turns out to be unstable 
with respect to plane-parallel disturbances. 

(3) The influence of the complicating factors listed 
II 

above in the equilibrium statement of the problem 12 

shows up in the determination of the dependence of 
Fk,, on the parameters of the problem. The functions 

FkCR(T), Fkc,(Bi) and Fkc,(Pe) obtained indicate 
the possibility for a substantial increase and decrease 

13. 

in the explosive threshold as compared with the well 
known value for the layer with perfectly heat-con- 
ducting boundaries. 14. 

(4) Even though vibrational regimes are possible 
in the system, in all cases the monotonous dis- 15. 
turbances were responsible for the incipience of con- 
vective motion. 

(5) The dependencies of the minimum critical Ray- 
leigh number on the parameters of the problem, 

,6, 

Rae(r), Ra*(Bi) Ra*(Pe), characterize a very 
strong influence of the mechanisms studied on the 17. 

critical conditions for the incipience of convection. 
In the limiting cases, correspondence is established 

18. 

between the results obtained and the solutions of the 
Rayleigh [8] and Jones [4] problems. 
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STABILITE CONVECTIVE DUNE COUCHE LIQUIDE HORIZONTALE REACTIVE EN 
PRESENCE DE DIFFERENTS FACTEURS COMPLICATIFS 

R&m&La stabilite convective d’une couche liquide horizontale et chimiquement active est etudiee quand 
une reaction exothermique d’ordre zero prend place en presence de facteurs complicatifs : chauffage de la 
couche, conductivites thermiques differentes des frontitres et mouvement transversal du reactant. Utilisant 
la methode de Runge-Kutta, une etude numerique du probleme de stabilite lineaire spectrale des regimes 
de transfert thermique est conduite en resolvant le probleme non lineaire generalise de I’explosion 
thermique. Les resultats obtenus montrent une influence notable des facteurs complicatifs (precedemment 
design&) sur les conditions critiques de I’explosion thermique et sur la limite de la naissance du mouvement 

convectif du reactant. 

KONVEKTIVE STABILITAT EINER HORIZONTALEN REAGIERENDEN 
FLUSSIGKEITSSCHICHT IN ANWESENHEIT VERSCHIEDENER STdRENDER EINFLUSSE 

Zusammenfassung-Die konvektive Stabilitat einer horizontalen, chemisch aktiven Fliissigkeitsschicht 
wird untersucht. In der Schicht findet eine exotherme Reaktion nullter Ordnung statt, wobei eine Anzahl 
stiirender Einfliisse vorhanden ist : Aufwarmung der Schicht, unterschiedliche Wirmeleitfahigkeiten der 
Berandungen und Querstrijmung im Reaktanden. Unter Verwendung des Runge-Kutta Verfahrens wird 
das hneare spektrale Stabilitatsproblem der stationaren Warmeiibertragung numerisch untersucht. Dies 
erfolgt durch L&en des verallgemeinerten nichtlinearen Problems der thermischen Explosion. Die Ergeb- 
nisse zeigen einen wichtigen Einflurj der oben genannten storenden Faktoren aufdie kritischen Bedingungen 
fur eine thermische Explosion und auf die Grenze fur das Einsetzen einer Konvektionsstromung im 

Reaktanden. 

KOHBEKTMBHAR YCTO@IkiBOCTb FOPM30HTAJIbHOF0 CJIOlI PEAI-IIPYIOIIIER 
)KMAKOCTM I-IPM HAJIM=IkiM PA3JIMYHbIX OCJIO~HIIIOIIIHX @AKTOPOB 

.k"UOT#N,"~-ki3yYaeTC~ KOHBeKTBBHal YCTOhHBOCTb rOpH3OHTEiJlbHOrO CnOIl XllMBYeCKA ZiKTBBHOii 

EBIIKOCTB, BO BCeM o6%eMe KOTOpOii IlpOTeKaeT 3K30TepMHWCKaS ~LIKIIHSI HyneBOrO IIOpHnKa, IIpH 

BOSL,eikTBBU pPna OCnOZ,CHSUOLUHX @aKTOpOB:lIOnOrpeBa CnO,,,pa3nWfHOfi TellnOllpOBOAHOCTH rpaHW, 

nonepeqnoro mnnicerina peareara. MeronoM Pynre-Kyrra ~ncnemio nccnenyercn nmiefinart cnerrpa- 
nbnaa sana=ta YCTO~~~BOCTE~ cTauisoHapHbrx pexw~oe TennonepeHoca, H&,eHHbIX B pe3ynbTaTe 

pelUeHEiK o606ureHHoii HenHHeiiHOii 3a.Ila'fEi TennOBOrO B3pbIB&nOn,"leHHbIepe3)'nbTaTbI tIOKa3bIBaEOT 

3Ha'fNTenbHOe BnHllHHe nepeWCneHHblX OCnOlKHIEOIW%X @aKTOpOB Ha KpHTWieCKHe YCnOBHn TennOBOrO 


